Anemia Introductory Lecture

General Approach to Anemia

1 Evaluate the CBC

2 Evaluate the MCV

3 Relevant History

4 Additional Labs

Hb WBC Plts Hct

Evaluate the CBC

Hemoglobin vs Hematocrit vs RBC Count

- Hemoglobin (g/dL) = concentration Normal natal women > 11/12 Normal natal men > 13/14
- Hematocrit (%) = % volume of blood that is RBCs. often calculated RBC x MCV/10
- **RBC Count (#)** = # RBCs in X volume (cells [in millions]/uL)

1 Evaluate the CBC

Ensure Accuracy of CBC:

- Make sure the lab test makes sense in context of other labs and was drawn correctly
- If lab drawn incorrectly can be diluted → decrease in all blood counts
- Margin of error for Hb is approximately 1 g/dL. Hb TREND is what matters. A single value could always be spurious, a trend is reliable.

1 Evaluate the CBC

Emergent vs Urgent vs Routine:

Emergency:

- If Hb <7 and signs/symptoms of hemodynamic instability
- Acute drop in hemoglobin is concerning
- Transfuse first and identify etiology later

Non-Urgent:

• Chronic low hemoglobin >7 is likely non-emergent

Evaluate the CBC

Look at the Other Blood Counts:

• Chronic inflammatory disorder

2 Evaluate the MCV: Mean Corpuscular Volume

Clinical Pearl: When evaluating a new anemia case the most important lab test I look at is the MCV and the MCV Trend

Common Causes of Anemia by MCV

Acquired

- IDA
- AOCD

Hereditary

• Thalassemia

Normocytosis MCV 80-100 fL

AOCD

- CKD, CHF
- Infection/inflammation

Microcytic Overlap

• ex: IDA

Macrocytic Overlap

• ex: Multiple Myeloma

Macrocytosis MCV > 100 fL

Megaloblastic (DNA metabolism)

- B12/Folate Deficiency
- Drugs, ETOH

Immature Cells (Reticulocytosis)

Hemolysis

Primary Bone Marrow Dysfunction

• MDS, Leukemia, Myeloma

Multifactorial (ex: Lipid Metabolism)

- Liver disease
- Endocrinopathies (hypothyroidism)

Clinical Pearl: Can have **mixed** microcytic and macrocytic anemia. Often this corresponds to an increased **RDW (RBC distribution width).** Check MCV Trend to assess for developing micro or macrocytosis

General Approach to Anemia: Relevant History

3 Relevant History

Medications	Is the patient on any blood thinners ? Anticoagulants or anti-platelet agents Are they on any myelotoxic medications ? Chemo, Bactrim
Bleeding History	Melena, BRBPR, heavy or regular menses ** Can have no history of GIB and/or negative guaiac and <u>still have a GIB</u>
Systemic Illness	Signs/symptoms of systemic or chronic illness Ex: fevers and weight loss could indicate a malignant process Ex: Chronic liver, kidney or heart disease

General Approach to Anemia: Additional Labs

4 Additional Labs

Iron Studies	Iron, TIBC or Transferrin, Ferritin	
Hemolysis	Haptoglobin, Reticulocyte, LDH, Bilirubin (Total + Direct)	
B12 +/- Folate	 Folate: Hard to be folate deficient. Send if macrocytic anemia with history of malnutrition or hemolysis MMA = high in B12 deficiency Homocysteine = high in B12 and folate deficiency 	
Multiple Myeloma	SPEP/UPEP, SIFE/UIFE, Free Kappa/Lambda	

Iron Studies

Iron (Fe)

Oxygen Binder (\$\$\$) Hemoglobin: Heme + Globin 4 heme groups, each with iron that binds O2

Transferrin/TIBC

Fe Transport (wallet)

Transferrin = protein transports iron in the blood Total Iron Binding Capacity = Available transferrin * TIBC is calculated from transferrin

Ferritin

Fe Storage (bank) Predominantly intracellular protein that stores iron acute phase reactant, increased in inflammatory states

Transferrin

Ferry your iron

Ferritin

Keep your iron in a *Tin*

Iron Studies

Iron (Fe)

Oxygen Binder (\$\$\$) Hemoglobin: Heme + Globin 4 heme groups, each with iron that binds O2

Transferrin/TIBC

Fe Transport (wallet)

Transferrin = protein transports iron in the blood Total Iron Binding Capacity = Available transferrin * TIBC is calculated from transferrin

Ferritin

Fe Storage (bank) Predominantly intracellular protein that stores iron acute phase reactant, increased in inflammatory states

Transferrin Saturation

Tsat = Fe/TIBC

Tsat < 20% = iron deficiency likely

Tsat > 20% = iron deficiency unlikely

Iron Studies

Iron (Fe)

Oxygen Binder (\$\$\$) Hemoglobin: Heme + Globin 4 heme groups, each with iron that binds O2

Transferrin/TIBC

Fe Transport (wallet)

Transferrin = protein transports iron in the blood Total Iron Binding Capacity = Available transferrin * TIBC is calculated from transferrin

Ferritin

Fe Storage (bank)

Predominantly intracellular protein that stores iron acute phase reactant, increased in inflammatory states

Iron Deficiency Anemia (IDA) Fe: Low TIBC: High upregulated to transport Fe Ferritin Low low Fe storage Tsat (Fe/TIBC) < 20% *Ferritin <40 is consistent with iron deficiency! Even if LLN in your lab is lower!

Anemia of Chronic Disease (AOCD) Fe: Low (variable) TIBC: Low (variable) Ferritin: High (variable)

Mixed IDA + AOCD Fe: Low-Normal (variable) TIBC: High-Normal (variable) Ferritin: High-Normal (variable)

* Soluble transferrin receptor is high in IDA. Can distinguish if there is IDA iso AOCD as this is not an acute phase reactant

Hemolysis Labs

Clinical Pearl: specificity of low haptoglobin and high LDH is high (>90%)

Coombs Test

Coombs Test

Coombs (DAT) Positive

= Autoimmune Hemolysis

Coombs = Direct Antiglobulin Test (DAT) Patients RBCs are washed with IgG and C3 Abs Spherocytes can be present on peripheral smear

Causes: Autoimmune, infections, lymphoproliferative disorders, drugs, immunosuppression, transfusions

Disease, Paroxysmal Cold Hemoglobinuria

MCV-Based General Diagnostic Approach

Common Differential Diagnosis

Acquired: Iron Deficiency Anemia (IDA)

- Often down-trending MCV
- History of bleeding (GI, menstrual). Very common in menstruating women! ~ 20%
- Iron studies: Low Fe, High TIBC, Low Ferritin, Tsat <20%, elevated RDW.
 Ferritin < 40 = IDA
- Smear: Microcytic, hypochromic RBCs
- Plts: Can have thrombocytosis
- Drugs: History of anticoagulants or anti-plts

Acquired: AOCD

- Can be more chronic
- Can be normocytic
- Often elevated ferritin (acute phase reactant)

Hereditary: Thalassemia

- Chronic anemia (congenital)
- MCV often quite low (< 65-75), out of proportion to degree of anemia
- Iron studies and RDW normal

Common Differential Diagnosis

AOCD

- Many causes: CKD, CHF, Infection/inflammation
- Fe studies can be confusing, ferritin often high
- Can have mixed AOCD with IDA

Microcytic Overlap

• ex: IDA

Macrocytic Overlap

• ex: Multiple Myeloma

Common Differential Diagnosis

Megaloblastic (DNA metabolism)

- B12/Folate Deficiency
- Drugs, ETOH (low retics iso BM suppression)

Immature Cells (Reticulocytosis)

Hemolysis (low hapto, high LDH, high indirect bili, high retics)

Primary Bone Marrow Dysfunction

- MDS, Leukemia, Myeloma
- Smear: Immature cells (ex: blasts in leukemia)

Multifactorial (ex: Lipid Metabolism)

- Liver disease (acanthocytes/spur cells present, abnormal LFTs)
- Endocrinopathies (hypothyroidism)

Anemia Reference Handout

<mark>Microcytosis</mark> MCV < 80 fL	 Acquired: Iron Deficiency Anemia (IDA) Often down-trending MCV History of bleeding (GI, menstrual). ~20% menstruating women! Iron studies: Low Fe, High TIBC, Low Ferritin, Tsat <20%, elevated RDW. Ferritin < 40 = IDA Smear: Microcytic, hypochromic RBCs Plts: Can have thrombocytosis Drugs: History of anticoagulants or anti-plts 	 Acquired: AOCD Can be more chronic Can be normocytic Often elevated ferritin (acute phase reactant) Hereditary: Thalassemia Chronic anemia (congenital) MCV often quite low (< 65-75), out of proportion to degree of anemia Iron studies and RDW normal
<mark>Normocytosis</mark> MCV 80-100 fL	 AOCD Many causes: CKD, CHF, Infection/inflammation Fe studies can be confusing, ferritin often high Can have mixed AOCD with IDA 	Microcytic Overlap • ex: IDA Macrocytic Overlap

• ex: Multiple Myeloma

<mark>Macrocytosis</mark> MCV > 100 fL

Megaloblastic (DNA metabolism)

- B12/Folate Deficiency
- Drugs, ETOH (low retics iso BM suppression)

Immature Cells (Reticulocytosis)

• Hemolysis (low hapto, high LDH, high Tbili, high retics)

Primary Bone Marrow Dysfunction

- MDS, Leukemia, Myeloma
- Smear: Immature cells (ex: blasts in leukemia)

Multifactorial (ex: Lipid Metabolism)

- Liver disease (acanthocytes/spur cells present, abnormal LFTs)
- Endocrinopathies (hypothyroidism)