ACUTE MYELOID LEUKEMIA & ACUTE PROMYELOCYTIC LEUKEMIA Introductory Lecture

OVERVIEW

- Blood Cell Morphology
- Lab Techniques
- AML
- APML
- Review Handout

https://en.wikipedia.org/wiki/Blood_cell

Types of Acute Leukemia

Types of Acute Leukemia

PERIPHERAL BLOOD SMEARS

Mature Myeloid Cells

- Most common WBC
- Average 3-lobed nucleus
- > 6 lobes = hyper-segmented
- Thin chromatin strand between lobes

- Horse-shoe or kidneyshaped nucleus
- Gray-blue cytoplasm
- Sometimes vacuoles
- Can look like a band

٠

- Bi-lobed nucleus
- Large purple/black granules

(A) Eosinophil

- Bi-lobed nucleus
- Red/orange cytoplasmic granules

Mature Lymphoid Cells

- Size slightly bigger than surrounding RBCs
- Large round/oval nucleus
- Slightly eccentric nucleus
- Thin rim of blue cytoplasm

Immature Blasts

- Larger than mature lymphocyte/RBC
- High nuclear:cytoplasmic ratio
- Nucleoli
- Fine chromatin
- Basophilic cytoplasm

(c) = auer rods

٠

- Linear granules in cytoplasm of myeloblasts
- NOT seen in lymphoblasts
- Cannot distinguish between ALL and AML on peripheral smear UNLESS auer rods present

- Increased number of mature, small lymphocytes
- "Soccer ball" nuclear pattern

Atypical Lymphocytes (viral infection)

- Larger than mature lymphocyte/RBC
- Cytoplasm appears idented by RBCs
- Nucleus immature, large, convoluted
- Sometimes azurophilic granules

LABORATORY TESTS

Lab Techniques

Flow Cytometry

Karyotyping

FISH

Genetic Sequencing

Different blood cell types have unique sizes and granularities

these cells travel through a flow cytometry machine which shoots a laser beam at the cells

Unique cell sizes and granularities causes unique patterns of light scatter from the laser beam

flow cytometry scatter data output is mapped by:

FS "forward light scatter" SS "side light scatter" FS and SS data can be graphed to identify different cell populations

blood cells have identifying markers on their cell surface = CD "cluster of differentiation" these CD markers can be tagged with fluorescently labeled monoclonal antibodies These fluorescent tags can be picked up on flow cytometry

Flow cytometry data tells you what cell type you are looking at: granulocyte, monocyte, lymphocyte... As well as what CD markers each cell type has: B cell markers, T cell markers, myeloid cell markers...

Taken together, can tell you what percentage of lymphocytes are B cells and identify monoclonal cell populations

Multiple CD markers can be tagged and analyzed at one time

Mutually Exclusive Markers CD5 and CD19 stain different populations

Co-Expression Markers CD7 and CD3 stain the same population

Non-Expression Markers CD117 and CD34 stain neither population

Cytogenomics

1. Karyotyping

2. FISH

Karyotyping

Karyotyping = visual inspection of metaphase (condensed) chromosomes

Karyotyping

46 Chromosomes:

22 autosomal chromosome pairs 1 sex chromosome pair (XX or XY)

Monosomy	Absence of a single chromosome	
Trisomy	Gain of a single chromosome	
Deletions	Deletion of part of a chromosome	
Duplications	Duplication of a piece of a chromosome	
Translocation	Movement of a piece of a chromosome to another area	

Fluorescence In-Situ Hybridization = FISH

Fluorescently tagged DNA probes can detect targeted DNA sequences

FISH can only detect KNOWN targets with KNOWN DNA probes

Next Generation Sequencing = NGS

Gene Sequencing sequences specific genes and detects ANY gene mutations

Substitution	Substitution of one nucleotide for another	
Insertion	Insertion of additional nucleotide	
Deletion	Deletion of additional nucleotide	

** Germline mutation = INHERITED: present at birth, present in gametes
** Somatic mutation = NOT INHERITED: acquired during lifetime, present in certain cells

Flow Cytometry	30052412 LMD real cells 1024 768 B lymphocytes 256 0 10 ⁰ 10 ¹ 10 ² 19 ² PE 10 ³ 10 ⁴	Cell shape/size and CD marker identifies the cell population
Karyotyping		Visual inspection of metaphase chromosomes reveals large gene changes
FISH		Fluorescently tagged DNA probes can detect target DNA sequences
Genetic Sequencing	GG <u>CCT</u> AA → GG <u>TCC</u> AA	NGS sequences specific genes and detects ANY gene mutations

ACUTE MYELOID LEUKEMIA

AML Pathology & Presentation

(1) RISK FACTORS

De Novo

- Congenital
- Age
- Radiation Exposure
- Chemical Exposures (topoisomerase, alkylating agents)

Secondary

- MDS/MPN
- PNH
- Aplastic Anemia

(2) GENETIC MUTATION a genetic abnormality causes proliferation of myeloid progenitor cells

(3) ABNORMAL PROLIFERATION & MYELOPHTHISIS

These myeloid progenitor cells take over the bone marrow, crowding it and inhibit production of other BM produced cells (RBCs, platelets)

EPIDEMIOLOGY

- Most common adult leukemia
- Average age 67

PROGNOSIS

• 5-year OS 25%

AML Presentation

PRIMARY DISORDER	SYMPTOM/LAB FINDING
Leukocytosis/Leukopenia	Infections/Fever Fatigue Peripheral blasts
Anemia Myelophthisic	Fatigue Pallor SOB Peripheral teardrop RBCs
Thrombocytopenia Myelophthisic	Petechiae Mucocutaneous bleeding
Leukemic Cell Organ Infiltration	Bone infiltration \rightarrow Pain Skin infiltration \rightarrow Rash/Leukemia cutis Liver/Kidney \rightarrow liver/kidney dysfunction CNS \rightarrow HA, neuropathy
DIC Activation of the clotting cascade	INR/PTT, D-dimer elevation Thrombocytopenia, Low fibrinogen Low Factor levels (including F8) Increased bleeding/clotting
TLS Increased leukemic cell turnover	Hyperkalemia Hyperuricemia Hyperphosphatemia Hypocalcemia
Leukostasis Increased viscosity, endothelial damage, cytokine release	HA, neuropathy, visual changes, tinnitus SOB/respiratory failure, MI

AML Peripheral Smear

- Larger than mature lymphocyte/RBC
- High nuclear:cytoplasmic ratio
- Nucleoli
- Fine chromatin
- Basophilic cytoplasm

Myeloblasts (APML)

- (c) = auer rods
- Linear granules in cytoplasm of myeloblasts
- NOT seen in lymphoblasts
- Cannot distinguish between ALL and AML on peripheral smear UNLESS auer rods present

CBC DIFF on PERIPHERAL BLOOD:

(1) Peripheral blasts

* may be read as "other" on initial read

(2) Variety of myeloid cells

* neutrophils, eosinophils, basophils...

AML Work Up

Flow Cytometry

Karyotyping

FISH

NGS

Peripheral Labs:

- 2 green top tubes (Peripheral Flow & Cytogenetics)
- In-house NGS (FLT3, CEBPA, NPM1, C-Kit, BCR-ABL, TP53, JAK2)
- CBC w/ diff, CMP BID-TID
- DIC labs (INR, PTT, fibrinogen) BID-TID
- TLS labs (uric acid, LDH, K, Ca, PO4) BID-TID
- G6PD
- HIV, hepatitis, CMV
- Fe studies
- Type & Cross
- Blood cultures

Other Tests

- EKG
- TTE
- CXR or CT if symptoms

<u>Start</u>

- IVF
- Consider starting allopurinol, acyclovir, posaconazole ppx
- Pseudomonal AB coverage if fever

AML Work Up

FLT3	CEBPA	p53
NPM1	C-kit	

AML Diagnosis

Flow Cytometry

20% leukemia cells in the bone marrow or blood

#2

<20% leukemia cells in blood/bone marrow BUT AML defining cytogenetic mutation

t(15;17)	inv(16)
t(8;21)	t(16;16)

AML Risk Stratification

AML can be risk-stratified based on genetic profile. This DEFINES what treatment patients will receive

Good Risk
t(15;17); PML-RARA
t(8;21)
Inv(16)
(16;6)
Biallelic mutated CEBPA
FLT3 negative
NPM1 mutation
With FLT3 negative/low
IDH2

** Intermediate & high risk usually need stem cell transplant if they are candidates

AML Treatment

INDUCTION

Goal = <u>achieve</u> **remission** remission = no leukemia cells in bone marrow

chemotherapy

CONSOLIDATION

Goal = maintain remission

Low Risk Chemo (HiDAC) Intermediate/High Risk Allogeneic SCT **AML Induction:** <u>Age < 60</u> or <u>Good Performance Status</u>

AML Induction: <u>Age > 60</u> or <u>Poor Performance Status</u>

HMA = Hypomethylating Agent

Azacitidine or Decitabine

+/-

AML Monitoring

Diagnostic BMB

Pre-treatment assessment Send Cytogenetics, NGS

D14 Bone Marrow Biopsy

Goal = < 5% blasts Expect hypocellular Don't Send Cyto, NGS

D28 Bone Marrow Biopsy

Goal = < 5% blasts Expect count recovery Repeat Cyto, NGS

* If D14 marrow is positive, consider repeat 7&3 or 5&2

AML Consolidation

Low Risk \rightarrow CHEMO

Commonly: HiDac = high dose cytarabine

Intermediate & High Risk \rightarrow BMT

#1 Conditioning Chemotherapy

* myeloablative (MAC) >> Reduced Intensity (RIC) if young/fit

#2 Allogeneic Stem Cell Transplant

* from umbilical cord, peripheral blood, bone marrow

* Can only get BMT if in remission

AML Relapsed/Refractory

IDH1 Inhibitors: ivosidenib

IDH2 Inhibitor: enasidenib

FLT 3 Inhibitor: gilteritinib

CD33: gemtuzumab

7 & 3 Cytarabine + Anthracycline	
HMA +/- venetoclax	
FLAG +/- IDA Fludarabine, cytarabine, G-CSF +/- Idarubicin	
CLAG +/- IDA Cladribine, cyarabine, G-CSF +/- Idarubicin	

AML Prophylaxis

PROPHYLAXIS TARGET	PROPHYLAXIS MEDICATION
Bacterial	Levofloxacin 750 mg QD * Can defer inpatient until patient has fever, however if fever consider broad spectrum AB
Viral	Acyclovir 400 mg BID
Fungal	Posaconazole 300 mg QD (load 300 mg BID x1) * Can cause LFT abnormalities * Covers mucor, aspergillus
TLS	Allopurinol 300 mg QD * Renally dose if AKI
Neutropenia	GSCF * used in consolidation, not often used for induction (consider in neutropenic fever)

AML Complications

COMPLICATIONS	MANAGEMENT
Neutropenic Fever	Cefepime +/- vancomycin +/- flagyl * Pan-culture (peripheral & central line if present) * Consider CT scan of chest or abdomen
Anemia/Thrombocytopenia	Hb > 7 Plts >10 (>30 if fever, >50 if bleeding/procedure) If not responsive to plts, run slowly over 4H * Check 1 hour post-transfusion CBC * TBW blood bank re: matched plts * Consider sending platelet AB
TLS	IVF Allopurinol Rasburicase 0.1 mg/kg if uric acid > 10 * If G6PD negative * Up to 4.5 mg max
DIC	FFP or Cryo for goal INR < 1.5, fibrinogen >100 * Confirm no suspicion for APML, consider ATRA
CNS/CSF Disease	IT Methotrexate
Leukocytosis/Leukostasis	Cytoreduction (chemotherapy or hydroxyurea) Leukopheresis * Usually only if WBC >50 -100 * Consider avoiding transfusions, can increase viscosity

ACUTE PROMYELOCYTIC LEUKEMIA

APML Pathology

APML is a sub-set of AML (mostly) defined by the t(15;17) translocation of PML-RARA

Good Overall Prognosis for APML: complete remission = 80-90%

however

Poor Early Survival for APML: 30-day mortality = 20%

APML Treatment

RISK CATEGORY	WBC	Platelet
LOW	< 10	> 40
INTERMEDIATE	< 10	< 40
HIGH	> 10	

LOW RISK TREATMENT

ATRA (all-trans-retinoic acid) + ARSENIC

* ATRA causes APML blasts to differentiate into mature myeloid cells

HIGH RISK TREATMENT

ATRA + ARSENIC + ADDITIONAL AGENT

- (1) with **Anthracycline**
- (2) with **Gemtuzumab**

BMB Monitoring occurs at 4-6 weeks

* Delayed because of differentiation

APML Complications

COMPLICATIONS of APML		
DIC	 Activation of clotting cascade Symptoms = bleeding/clotting Treatment = FFP/Cryoglobulin 	
DIFFERENTIATION SYNDROME	 Maturing myeloid cells → cytokine release Occurs in 25% of patients that get ATRA Symptoms = fever, hypotension, weight gain, effusions, hypoxia, renal/hepatic dysfunction Treatment = Steroids (dexamethasone 10 mg BID) 	
PSEUDOTUMOR CEREBRI	Caused by ATRADiscontinue ATRA	
QTC Prolongation	Caused by arsenicDaily EKG	

AML & APML Reference Handout

Cell shape/size and CD marker identifies the cell population

Blood or Bone Marrow Flow Cytometry Result: There is a 20% abnormal CD20+ population

Visual inspection of metaphase chromosomes reveals large gene changes

Karyotype result: There is trisomy 21

Fluorescently tagged DNA probes can detect target DNA sequences

FISH result:

There are X copies of a BCR-ABL translocation

Gene Sequencing sequences specific genes and detects ANY gene mutations

NGS result: There is a FLT3 mutation

Peripheral Labs:

- 2 green top tubes (Peripheral Flow & Cytogenetics)
- In-house NGS (FLT3, CEBPA, NPM1, C-Kit, BCR-ABL, TP53, JAK2)
- CBC w/ diff, CMP BID-TID
- DIC labs (INR, PTT, fibrinogen) BID-TID
- TLS labs (uric acid, LDH, K, Ca, PO4) BID-TID, G6PD
- HIV, hepatitis, CMV
- Type & Cross, Fe studies

CXR or CT if symptoms

Blood cultures

Other Tests

- EKG
- TTE
- (
 - Consider TLS/ID ppx

• IVF

Pseudomonal AB coverage if fever

Flow Cytometry

#1) <u>20% leukemia cells</u> in the marrow or blood

#2) <u>AML defining</u> cytogenetic mutation

t(15,17)	inv(16)
t(8,21)	t(16,16)

AML Presentation

PRIMARY DISORDER	SYMPTOM/LAB FINDING
Leukocytosis/Leukopenia	Infections/Fever Fatigue Peripheral blasts
Anemia Myelophthisic	Fatigue Pallor SOB Peripheral teardrop RBCs
Thrombocytopenia Myelophthisic	Petechiae Mucocutaneous bleeding
Leukemic Cell Organ Infiltration	Bone infiltration \rightarrow Pain Skin infiltration \rightarrow Rash/Leukemia cutis Liver/Kidney \rightarrow liver/kidney dysfunction CNS \rightarrow HA, neuropathy
DIC Activation of the clotting cascade	INR/PTT, D-dimer elevation Thrombocytopenia, Low fibrinogen Low Factor levels (including F8) Increased bleeding/clotting
TLS Increased leukemic cell turnover	Hyperkalemia Hyperuricemia Hyperphosphatemia Hypocalcemia
Leukostasis Increased viscosity, endothelial damage, cytokine release	HA, neuropathy, visual changes, tinnitus SOB/respiratory failure, MI

AML Risk Assessme	e <mark>nt</mark>	AML Induction Therap	<mark>y</mark>	
Good Risk	High Risk	7 = CYTARABINE	Continuous infusion D1-7	FLT3+ = Midostaurin
t(15;17); PML-RARA	t(6;9)		100-200 mg	
t(8;21)	inv3		1	CD33+ = Gemtuzumab
lnv(16)	t(9;22); BCR-ABL1	3 = ANTHRACYCLINE	IV Push D1-3	KISK OF VOD/SOS
t(16;6)	FLT3 positive		Idarubicin = 12 mg/m^2	
Biallelic mutated CEBPA	ASXL1		Daunorubicin = 60-90 mg/mz	
FLT3 negative	RUNX1	Age > 60 or Poor PS	HMA (AZA/decitabine) +/- Ve	netoclax
NPM1 mutation With FLT3 negative/low	ТР53			
IDH2	MLL (11q23)		D14	D28
	Complex or monosomal karvotype	Monitor BN		* Send Cytogenetics, NGS
Treatment Paradign	n	AML Consolidation The	rapy	
ineatment Paratigin		Low Risk	HiDac = high dose cytarabine	
INDUCTION achieve remission	Chemotherapy	Intermediate & High Risk	# 1 Conditioning Chemothera * myeloablative (MAC) >>	py Reduced Intensity (RIC)
CONSOLIDATION	Low Risk Chemotherapy		# 2 Allogeneic Stem Cell Trans* from umbilical cord, perip	plant oheral blood, bone marrow
maintain remission	Intermediate/High Risk BMT	Relapsed/Refractory	 Targeted agent (ex: IDH inhibitor HMA +/- venetoclax FLAG +/- IDA, CLAG +/- IDA 	r)

AML Prophylaxis

PROPHYLAXIS TARGET	PROPHYLAXIS MEDICATION
Bacterial	Levofloxacin 750 mg QD * Can defer inpatient until patient has fever, however if fever consider broad spectrum AB
Viral	Acyclovir 400 mg BID
Fungal	Posaconazole 300 mg QD (load 300 mg BID x1) * Can cause LFT abnormalities * Covers mucor, aspergillus
TLS	Allopurinol 300 mg QD * Renally dose if AKI
Neutropenia	GSCF * used in consolidation, not often used for induction (consider in neutropenic fever)

AML Complications

COMPLICATIONS	MANAGEMENT
Neutropenic Fever	Cefepime +/- vancomycin +/- flagyl * Pan-culture (peripheral & central line if present) * Consider CT scan of chest or abdomen
Anemia/Thrombocytopenia	Hb > 7 Plts >10 (>30 if fever, >50 if bleeding/procedure) If not responsive to plts, run slowly over 4H * Check 1 hour post-transfusion CBC * TBW blood bank re: matched plts * Consider sending platelet AB
TLS	IVF Allopurinol Rasburicase 0.1 mg/kg if uric acid > 10 * If G6PD negative * Up to 4.5 mg max
DIC	FFP or Cryo for goal INR < 1.5, fibrinogen >100 * Confirm no suspicion for APML, consider ATRA
CNS/CSF Disease	IT Methotrexate
Leukocytosis/Leukostasis	Cytoreduction (chemotherapy or hydroxyurea) Leukopheresis * Usually only if WBC >50 -100 * Consider avoiding transfusions, can increase viscosity

APML Diagnosis

APML is a sub-set of AML Defined by the t(15,17) translocation of PML-RARA (mostly)

Good PrognosisPoor Early SurvivalComplete remission = 80-90%30-day mortality = 20%

APML Treatment

RISK	WBC	Platelet
LOW	< 10	> 40
INTERMEDIATE	< 10	< 40
HIGH	> 10	

LOW RISK TREATMENT	HIGH RISK TREATMENT
ATRA + ARSENIC	ATRA + ARSENIC with Anthracycline or Gemtuzumab

* ATRA causes differentiation of APML \rightarrow mature myeloid cells

APML Complications

COMPLICATIONS of APML	
DIC	 Activation of clotting cascade Symptoms = bleeding/clotting Treatment = FFP/Cryoglobulin
DIFFERENTIATION SYNDROME	 Maturing myeloid cells → cytokine release Occurs in 25% of patients that get ATRA Symptoms = fever, hypotension, weight gain, effusions, hypoxia, renal/hepatic dysfunction Treatment = Steroids (dexamethasone 10 mg BID)
PSEUDOTUMOR CEREBRI	Caused by ATRADiscontinue ATRA
QTC Prolongation	Caused by arsenicDaily EKG

BMB @ 4-6 weeks

* Delayed because of differentiation