ACUTE LYMPHOID LEUKEMIA Introductory Lecture

OVERVIEW

- Blood Cell Morphology
- Lab Techniques
- ALL
- Review Handouts

https://en.wikipedia.org/wiki/Hematopoietic_stem_cell

Macrophage

Types of Acute Leukemia

Types of Acute Leukemia

PERIPHERAL BLOOD SMEARS

Mature Myeloid Cells

- Most common peripheral WBC
- Average 3-lobed nucleus
- >6 lobes = hyper-segmented
- Thin chromatin strand between lobes

- Horse-shoe/kidney shaped
 nucleus
- Gray-blue cytoplasm
- Sometimes vacuoles
- Can look like a band

- Bi-lobed nucleus
- Large purple/black granules

(A) Eosinophil

- Bi-lobed nucleus
- Red/orange cytoplasmic granules

Mature Lymphoid Cells

- Size slightly bigger than surrounding RBCs
- Large round/oval nucleus
- Slightly eccentric nucleus
- Thin rim blue cytoplasm

Immature Blasts

- Larger than mature ٠ lymphocyte/RBC
- High nuclear:cytoplasmic ratio •
- Nucleoli •
- Fine chromatin ٠
- Basophilic cytoplasm •

(c) = auer rods

٠

- Linear granules in cytoplasm of myeloblasts
- NOT seen in lymphoblasts •
- Cannot distinguish between ٠ ALL and AML on peripheral smear UNLESS auer rods present

"Soccer ball" nuclear pattern ٠

(CLL)

Atypical Lymphocytes (viral infection)

- Larger than mature ٠ lymphocyte/RBC
- Cytoplasm appears idented by • **RBCs**
- Nucleus immature, large, • convoluted
- Sometimes azurophilic granules ٠

LABORATORY TESTS

Lab Techniques

Flow Cytometry

Karyotyping

FISH

Genetic Sequencing

Different blood cell types have unique sizes and granularities

these cells travel through a flow cytometry machine which shoots a laser beam at the cells Unique cell sizes and granularities causes unique patterns of light scatter from the laser beam

flow cytometry scatter data output is mapped by:

FS "forward light scatter" SS "side light scatter" FS and SS data can be graphed to identify different cell populations

blood cells have identifying markers on their cell surface = CD "cluster of differentiation" these CD markers can be tagged with fluorescently labeled monoclonal antibodies These fluorescent tags can be picked up on flow cytometry

Flow cytometry data tells you what cell type you are looking at: granulocyte, monocyte, lymphocyte... As well as what CD markers each cell type has: B cell markers, T cell markers, myeloid cell markers...

Taken together, can tell you what percentage of lymphocytes are B cells and identify monoclonal cell populations

Multiple CD markers can be tagged and analyzed at one time

Mutually Exclusive Markers CD5 and CD19 stain different populations

Co-Expression Markers CD7 and CD3 stain the same population

Non-Expression Markers CD117 and CD34 stain neither population

Cytogenomics

1. Karyotyping

2. FISH

Karyotyping

Karyotyping = visual inspection of metaphase (condensed) chromosomes

Karyotyping

46 Chromosomes:

22 autosomal chromosome pairs 1 sex chromosome pair (XX or XY)

Monosomy	Absence of a single chromosome
Trisomy	Gain of a single chromosome
Deletions	Deletion of part of a chromosome
Duplications	Duplication of a piece of a chromosome
Translocation	Movement of a piece of a chromosome to another area

Fluorescence In-Situ Hybridization = FISH

Fluorescently tagged DNA probes can detect targeted DNA sequences

FISH can only detect KNOWN targets with KNOWN DNA probes

Next Generation Sequencing = NGS

Gene Sequencing sequences specific genes and detects ANY gene mutations

Substitution	Substitution of one nucleotide for another
Insertion	Insertion of additional nucleotide
Deletion	Deletion of additional nucleotide

** Germline mutation = INHERITED: present at birth, present in gametes
** Somatic mutation = NOT INHERITED: acquired during lifetime, present in certain cells

Flow Cytometry	30052412.LMD real cells 1024 768 512 512 256 0 10 ⁰ 10 ¹ 10 ² 10 ² 10 ³ 10 ⁴	Cell shape/size and CD marker identifies the cell population
Karyotyping		Visual inspection of metaphase chromosomes reveals large gene changes
FISH		Fluorescently tagged DNA probe can detect target DNA sequence
Genetic Sequencing	GG <u>CCT</u> AA → GG <u>TCC</u> AA	NGS sequences specific genes and detects ANY gene mutations

ACUTE LYMPHOCYTIC LEUKEMIA

ALL Presentation

Presentation = Similar to AML \rightarrow

ALSO can present as primary:

- (1) Mediastinal Mass
- (2) Testicular Mass

PRIMARY DISORDER	SYMPTOM/LAB FINDING
Leukocytosis/Leukopenia	Infections/Fever Fatigue Peripheral blasts
Anemia Myelophthisic	Fatigue Pallor SOB Peripheral teardrop RBCs
Thrombocytopenia Myelophthisic	Petechiae Mucocutaneous bleeding
Leukemic Cell Organ Infiltration	Bone infiltration \rightarrow Pain Skin infiltration \rightarrow Rash/Leukemia cutis Liver/Kidney \rightarrow liver/kidney dysfunction CNS \rightarrow HA, neuropathy
DIC Activation of the clotting cascade	INR/PTT, D-dimer elevation Thrombocytopenia, Low fibrinogen Low Factor levels (including F8) Increased bleeding/clotting
TLS Increased leukemic cell turnover	Hyperkalemia Hyperuricemia Hyperphosphatemia Hypocalcemia
Leukostasis Increased viscosity, endothelial damage, cytokine release	HA, neuropathy, visual changes, tinnitus SOB/respiratory failure, MI

ALL Peripheral Smear

- Larger than mature lymphocyte/RBC
- High nuclear:cytoplasmic ratio
- Nucleoli
- Fine chromatin
- Basophilic cytoplasm

• Increased number of mature, small lymphocytes

CBC DIFF on PERIPHERAL BLOOD

- Peripheral blasts
 - * may be read as "other"
- Lymphocytosis

ALL Pathology

Bad Clinical Prognostic Factors

Age

• Worse survival for older adults

WBC B cells > 30KT cells > 100K

Early T/B Cells

CNS disease

MRD at end of induction

Bad Genetic Prognostic Factors

Philadelphia chromosome t(9;22)

Ph-Like

t(4;11)

Complex cytogenetics

Prognosis By Ph-Status:

Ph- ALL: 5Y EFS 50%

Ph+ ALL: 5Y EFS 20%

ALL Treatment

INDUCTION

Goal = <u>achieve</u> **remission** * remission = no leukemia cells in bone marrow

Chemotherapy

Chemotherapy

+ CNS prophylaxis

CONSOLIDATION

Goal = maintain remission

Low Risk Chemotherapy Intermediate or High Risk Allogeneic SCT

ALL Treatment

Treatment is Stratified by Philadelphia Chromosome

Ph-

CHEMOTHERAPY

Ph+

CHEMOTHERAPY + TYROSINE KINASE INHIBITOR
* in older patients can consider TKI/steroids alone

ALL Chemotherapy

MULTI-AGENT CHEMOTHERAPY REGIMENS:

there are many institution-dependent chemotherapy regimens, a few examples below

* Regimens include IT Chemo: Intrathecal CNS prophylaxis

Tyrosine Kinase Inhibitors

Ph+

ADD TKI

Antibodies

CD19, CD20, or CD22

ADD CD-specific Antibody

ALL TKI

TYROSINE KINASE INHIBITORS: inhibit the Philadelphia chromosome, only in Ph+

* These TKIs also used in CML

ALL Antibodies

Rituximab = CD20+ antibody, in CD20+ B-cell ALL

Blinatumomab = Bi-specific T-cell Engager (BiTE), targets CD3/CD19 * Toxicities include cytokine release syndrome

Inotuzumab = CD22+ (in relapse)

ALL Review Handout

Cell shape/size and CD marker identifies the cell population

Blood or Bone Marrow Flow Cytometry Result: There is a 20% abnormal CD20+ population

Visual inspection of metaphase chromosomes reveals large gene

Karyotype result: There is trisomy 21

Fluorescently tagged DNA probes can detect target DNA sequences

FISH result:

There are X copies of a BCR-ABL translocation

Gene Sequencing sequences specific genes and detects ANY gene mutations

NGS result: There is a FLT3 mutation

Kls Ph+ = Chem	otherapy + TKI	Dasatinib (2 nd TKI) * Penetrates CNS	QTC Pleural Effusion Pulmonary HTN Thrombocytopenia	Bosutinib (2 nd TKI)	Rash Diarrhea GI/Liver toxicity
Imatinib (1 st TKI)	QTC Rash Diarrhea Muscle cramps Fluid Retention	Nilotinib (2 nd TKI)	QTC Pancreatitis Hyperglycemia Hyperlipidemia GI/Liver toxicity	Ponatinib (3rd TKI)	QTC Thrombosis CHF Liver toxicity Pancreatitis Fluid retention